Декабрь 2024
Пн Вт Ср Чт Пт Сб Вс
« Мар    
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Записи с меткой «обнаруживается»

Высокоуглеродистая проволока приобретает большую прочность в результате холодного волочения. Но достигнутая таким образом высокая прочность очень неустойчива. Она
значительно снижается как в процессе нагрева, так и после остывания, когда обнаруживается, что восстанавливается только небольшая часть потерянной прочности. Современные методы изготовления предварительно напряженных конструкций и последующая эксплуатация их предусматривают возможность неоднократного нагревания
арматуры конструкции. Проволоку нагревают: на заводе-изготовителе для улучшения ее пластических свойств; в момент установки ее в формы при весьма прогрессивном
электротермическом методе натяжения; при эксплуатации конструкции в горячих цехах и, наконец, проволока может нагреться при пожаре.
В связи с различными стадиями и условиями нагрева проволоки выше 100° С изучали поведение и изменение ее свойств в зависимости от температуры, продолжительности и
быстроты нагревания и охлаждения. В первое время применения высокоуглеродистой проволоки для предварительно напряженных конструкций ее нагревание было категорически запрещено в связи с безвозвратной потерей прочности от нагрева. В вопросе действительного спада прочности при продолжительном нагреве полную ясность внесли исследования НИИ-200 (В. Г. Чернашкин и Н. А. Попова), в которых изучались пять видов высокопрочной проволоки, марки, химический состав и механические качества которой представлены напряжение — деформация этих проволок показывает, что наряду с проволоками очень жесткими — с удлинением при разрыве в 1,5%, изучали и
проволоки с удлинением при разрыве 6%. Проволоки в напряженном и ненапряженном состоянии испытывали в печи при высокой температуре и после охлаждения.На
графиках показано влияние на прочность проволоки нагрева до температуры 600° С в течение 30 мин и последующего отпуска в течение 20 мин (нагрев проволоки производился в ненапряжен-ном состоянии).При нагреве до 100° С заметных изменений прочности ненапряженной проволоки не наблюдается. При дальнейшем нагреве прочность непрерывно уменьшается и к 600° С падает до 10% от временного сопротивления. После охлаждения часть прочности проволоки восстанавливается, однако в различной степени, в зависимости от температуры нагрева и отпуска. Практически при температуре нагрева 200—300° С заметного снижения прочности не наблюдается:
значительно уменьшается временное сопротивление для всех видов проволок при нагреве выше 300° С и при 600° С составляет 40—50% от его начального значения. Исключение
составляет проволока № 5 (см. 3.28) с удлинением 1,6%, которая уже при нагреве до 200°С и после охлаждения дает заметное снижение прочности порядка 15%, а в процессе
дальнейшего нагрева —до 40%.